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Introduction 
Nonlinear quadratic integral equations appear very often, in many applications of real world 

problem.  For examples, quadratic integral equations are often applicable in the theory of radioactive 

transfer, kinetic theory of gases, in the theory of neutron transport and in the traffic theory. The theory of 

integral equations of fractional order has recently received a lot of attention and constitutes a significant 

branch of nonlinear analysis. Numerous research papers and monographs devoted to differential and 

integral equations of fractional order have appeared (see [1-3, 5-7, and 9-17].In recent years, different and 

integral equation of fractional order have found wide applications in physics mechanics, engineering, 

electro chemistry, economics and other fields [15,16,19,23,25].A lot of papers have been devoted to the 

problem of existence of solutions of nonlinear differential and integral equations of fractional order [1,10-

12,14,18,24] However, only a few papers appeared on the existence and properties of solutions of 

functional integral or differential equations of fractional  order on an unbounded interval[6-8,22]. 

Consider the following functional integral equation order with deviating arguments: 

  

       𝑥(𝑡) = 𝑔(𝑡, 𝑥(𝜂(𝑡)) +
𝑓(𝑡,𝑥(𝛽(𝑡)))

Γ(𝛼)
∫

ℎ(𝑡,𝑠)𝑢(𝑠,𝑥(𝛾(𝑠)))

(𝑡−𝑠)1−𝑥 𝑑𝑠,
𝑡

0
                  (1.1) 

 

          Where 𝑡 𝜖 𝑅+ = [0,∞], 𝛼 ∈ (0,1) is a fixed number and Γ (𝛼) denotes the gamma function. 

The aim of this paper is to study the existence of solutions of a nonlinear functional integral equation of 

fractional order with deviating arguments in the space of real functions, continuous and bounded on an 

unbounded interval. The technique used here is the measure of non compactness associated with the 

Scheduler fixed point theorem. Moreover, we will investigate an important property of the solutions 

which is called the local attractivity of solutions. This property is a generalization of the global 

attractively of solutions introduced in [17] and is also a variant of the property of asymptotic stability of 

solutions considered in [2-5,13, 20,21]. Eq. (1.1) studied in the paper is a generalization of Chandrasekher 

type equations [9].obtained in this paper generalize several ones obtained earlier by many authors. 

 

2. Preliminaries 
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 First we recall a few facts concerning fractional calculus[23]. Denote by L’ (a, b) the space of 

real functions defined and Labesgue  integrable on the interval(a, b),which is equipped with the standard 

norm. Let𝑥 ∈ 𝐿′(𝑎, 𝑏) and let ∝> 0 be fixed number[23-31].The Riemann-Liouville fractional integral of 

order ∝Of the function 𝑥(𝑡) is defined by the formula 

𝐼∝𝑥(𝑡) = 1/Γ(∝) ∫
𝑥(𝑠)

(𝑡 − 𝑠)1−∝

𝑡

𝑎

𝑑𝑠, 𝑡 ∈ (𝑎, 𝑏), 

Where 𝑟(∝)denotes the gamma function.it may be shown that the fractional integral operator𝐼𝑥 

transfroms the space 𝐿1(𝑎, 𝑏) into itself and has some other properties [7, 20, 23,25]. 

Next we present some facts concerning the measures of non compactness [5]. 

Suppose E is a real Banach space with the norm ‖. ‖ and the zero element 𝜃.Denote by 𝐵(𝑥, 𝑟) the closed 

ball centered at 𝑥 and with radius r. We write Br for the ball 𝐵(𝜃, 𝑟). If X is a subset of E then the symbole 

�̅� and Conv. X stand for the closure and convex closure of X, respectively[9-23]. Further, let denote the 

family of all nonempty and bounded subsets of E and 𝒩𝐸  its subfamily consisting of all relatively 

compact sets. 

We define the following notion of measure of non compactness. 

 
 

Definition 2.1 
 

  A mapping 𝜇: 𝒩𝐸 → 𝑅+ is said to be a measure of non compactness in the space E if it satisfies 

the following conditios: 

(i)The family ker  𝜇 = {𝑋𝜖𝒩𝐸: 𝜇(𝑋) = 0} is nonempty and ker𝜇 = {𝑋𝜖𝒩𝐸: 𝜇(𝑋) = 0}is nonempty and 

ker𝜇𝜖𝒩𝐸; 

(ii)𝑋 ∈ 𝑌 ⟹ 𝜇(𝑋) ≤ 𝜇(𝑌); 

(iii)𝜇(𝑋) = 𝜇(𝐶𝑜𝑛𝑣𝑋) = 𝜇(𝑋); 

(iv) 𝜇(𝜆𝑋 + (1 − 𝜆)𝑌 ≤ 𝜆𝜇(𝑋) + (1 − 𝜆)𝜇(𝑌) for 𝜆𝜖[0,1]; 
(v)If (Xn)is a sequence of closed sets from 𝜇𝐸  such that 𝑋𝑛+1 ∈ 𝑋𝑛 for n=1,2,3….. and if       lim

𝑛→∞
 𝜇(𝑋𝑛) =

0  then the set 𝑋∞ = 𝑛𝑛−1
∞𝑋𝑛 nonempty. 

The family ker 𝜇 defined in axiom (i)is called the kernel of the measure of non compactness 𝜇 

 
Remarks2.1.  

 

     Let us mention that the intersection set 𝑋∞from (v)is a member of the kernel of the measure of 

noncompactness 𝑢.indeed,from the inequality𝑢(𝑋∞) ≤ 𝑢(𝑋𝑛)for n=1,2……..we infer that 𝑢(𝑋∞ = 0 so 

𝑋∞𝜖 ker 𝑢.This property of of the intersection set 𝑋∞ will be crucial in our study.Further facts concerning 

measures of noncompactness and their properties may be found in [5,7]. 

Now we will work in the Banach space BC(R+) consisting of all real functions defined, continuous and 

bounded on R+with the norm ∥ 𝑥 ∥= 𝑠𝑢𝑝{|𝑥(𝑡)|: 𝑡 ≥ 0} 

Will use a measure of compactness in the space BC(R+)which was introduced in [5]. In order to define 

this measure let us fix a nonempty bounded subset  X of the space nd  a positive number BC (R+) and a 

positive number T. For 𝑥𝜖𝑋  and ∈≥ 0 denote by 𝜔𝑇(𝑥, 𝜖)the modules of continuity of the function x on 

the interval[0,T]i.e., 

𝜔𝑇(𝑥, 𝜖) = sup{|𝑥(𝑡) − 𝑥(𝑠)|: 𝑡, 𝑠𝜖[0, 𝑇], |𝑡 − 𝑠| ≤∈} 

Further, let us put 

𝜔𝑇(𝑥, 𝜖) = sup{ 𝜔𝑇(𝑥, 𝜖) : 𝑥 𝜖𝑋} 

𝜔0
𝑇(𝑋) = lim

∈→0
𝜔𝑇(𝑋, 𝜖), 

𝜔0(𝑋) = lim
𝑇→∞

𝜔0
𝑇(𝑋). 

If t is fixed number from R+ let us denote 𝑋(𝑡) = {𝑥(𝑡): 𝑥 ∈ 𝑋} and 

𝑑𝑖𝑎𝑚𝑋(𝑡) = sup {|𝑥(𝑡) − 𝑥(𝑡): 𝑥, 𝑦 ∈ 𝑋|}, 
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Finally consider the function 𝑢 defined on the family𝒩BC(R+) by the formula 

𝜇(𝑋) = 𝜔0(𝑋) + lim
𝑡→∞

sup 𝑑𝑖𝑎𝑚𝑋(𝑡).                          (2.1) 

It may be shown that the function 𝜇is the measure of non compactness in the space BC(R+).The kernel ker 

𝜇is the family all nonempty and bounded sets X such that functions belonging to X are locally 

equicontinuous on R+ and the thickness of the bundle formed by functions from X tends to zero at infinity. 

This property will permit us to characterize solutions of integral equation. 

Now let us assume that is non empty subset of the space BC(R+) and Q is open at 

 Defined on  Ψ  with values in BC(R+)[6-8]. 

Consider the following operator equation: 

𝑥(𝑡) = (𝑄𝑥)(𝑡), 𝑡 ≥ 0                                                       (2.2) 

Definition 2.2 
 

        We say that the solutions of eq.(2.2)are locally attractive if there exists a closed ball B(X0,r)in the 

space BC(R+)such that for arbitrary solutions 𝑥 = 𝑥(𝑡)and 𝑦 = 𝑦(𝑡)of eq (2.2) belonging to 𝐵(𝑥0, 𝑟) ∩
Ψwe have that  

lim
𝑡→∞

(𝑥(𝑡) − 𝑦(𝑡)) = 0                                                     (2.3) 

In the case when the limit (2.3) is uniform with respect to the set 𝐵(𝑥0, 𝑟) ∩ Ψ i.e.when for each  ∈> 0  

there exists T>0 such that  

                         |𝑥(𝑡) − 𝑦(𝑡)| ≤∈              (2.4) 

For all 𝑥. 𝑦 ∈ 𝐵(𝑥0, 𝑟) ∩ Ψ beining solutions of eq.(2.2) and for 𝑡 ≥ 𝑇,we will say that solutions of 

eq.(2.2)are uniformly locally attractive(or equivalently ,that solutions of eq.(2.2)are asymptotically stable  

 

3. Existence Results 

In this section we prove the main result of the paper ,for that we assume the following 

assumptions. 

 

(A1). The function 𝑔: 𝑅+ ∗ 𝑅 → 𝑅 is continuous and there exists a constant 𝑝 ≥ 0such that 
|𝑔(𝑡, 𝑥) − 𝑔(𝑡, 𝑦)| ≤ 𝑝|𝑥 − 𝑦| 

For any 𝑡𝜖𝑅+ and for all 𝑥, 𝑦 ∈ 𝑅. 
(A2).  The function 𝑓: 𝑅+ ∗ 𝑅 → 𝑅 is continuous and there exists a constant 𝑞 ≥ 0such that 

|𝑓(𝑡, 𝑥) − 𝑓(𝑡, 𝑦)| ≤ 𝑞|𝑥 − 𝑦| 
For any 𝑡𝜖𝑅+ and for all 𝑥, 𝑦 ∈ 𝑅. 
(A3).  The function𝜂, 𝛽, 𝛾: 𝑅+ → 𝑅+ are continuous, and  𝜂(𝑡) → ∞, 𝛽(𝑡) → ∞𝑎𝑠 𝑡 → ∞. 
(A4).  The function ℎ: 𝑅+ ∗ 𝑅 → 𝑅 is continuous and there exists function 𝑎, 𝑏: 𝑅+ → 𝑅+𝑏eing continuous 

𝑅+such that  |ℎ(𝑡, 𝑠)| ≤ 𝑎(𝑡)𝑏(𝑠)  For any , 𝑠 𝜖𝑅+ . 

(A5) The function 𝑢: 𝑅+ ∗ 𝑅 → 𝑅 is continuous moreover,there exists a function ∅: 𝑅+ → 𝑅+ being 

continuous and nondecreasing on 𝑅+ a and a constant k≥ 0such that    |𝑢(𝑡, 𝑥)| ≤ 𝑘∅(|𝑥|) 

For any 𝑡𝜖𝑅+ and for all 𝑥 ∈ 𝑅. 
Now denote by 𝐺 ̅and �̅� the following constants:  𝐺 ̅̅ ̅̅ = sup {|𝑔(𝑡, 0)|: 𝑡 𝜖𝑅+},  and  

         𝐹 ̅ = sup {|𝑓(𝑡, 0)|: 𝑡 𝜖𝑅+} 

Obviously,𝐺,̅, 𝐹 ̅ < ∞ in view of assumptions (H1)and (H2).Further,let us denote by �̅�(t)the function 

defined on 𝑅+in the following way:         �̅� (t)=∫
𝑏(𝑠)

(𝑡−𝑠)1−𝛼

𝑡

0
𝑑𝑠 

             It is easily seen that�̅� (t) continuous on𝑅+. 

(A6). The function𝑛 ̅:𝑅+ → 𝑅+ defined by the formula , 𝑛 ̅(𝑡) =a (t)𝑏  ̅̅ ̅(t),its bounded on 𝑅+and 

                               lim
𝑡→∞

𝑛 ̅(𝑡) = 0 

Keeping in mind, the above assumption we define the following constant:𝑁 ̅̅ ̅ = sup{𝑛 ̅(𝑡): 𝑡 𝜖𝑅+} 

                 𝑁 =  𝑁 ̅̅ ̅ N and M=k 𝐹 ̅𝑁 ̅̅ ̅. 

Now, we formulate our last assumption: 
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(A7) there exists a positive solution r0 of the inequality 

   𝑝𝑟 + �̅� +
1

Γ(𝛼)
[Nr]∅(𝑟) + 𝑀∅(𝑟)] ≤ 𝑟,         Such that      (𝑝 +

𝑁∅(𝑟0)

Γ(∝)
) < 1. 

 

 

Theorem3.1.Under assumption (A1)-(A7),Eq.(1.1)has at least one solution 𝑥 = 𝑥(𝑡) which belongs to 

the space BC(R+).Moreover, the solution of eq.(1.1)are uniformly locally attractive on R+. 

Proof. Consider the operator V defined on the space BC(R+).by the formula 

                   

                            (𝑉𝑥)(𝑡) = 𝑔 (𝑡. 𝑥(𝜂(𝑡))) +
𝑓(𝑡,𝑥(𝛽(𝑡)))

𝑟(𝛼)
∫

ℎ(𝑡,𝑠)𝑢(𝑠,𝑥(Γ(𝑠)))

(𝑡−𝑠)1−𝑥

𝑡

0
𝑑𝑠.                                         (3.1) 

     

in order to simplify our considerations we represent the operator V in the form 

        (𝑉𝑥)(𝑡) = (𝐺𝑥)(𝑡) + (𝐹𝑥)(𝑡)                                                                                                      (3.2) 

        Where    

                      (𝐺𝑥)(𝑡) = 𝑔 (𝑡. 𝑥(𝜂(𝑡))),     

                       ( 𝐹𝑥)(𝑡) = 𝑓 (𝑡. 𝑥(𝛽(𝑡))), 

                        (𝑈𝑥)(𝑡) =
1

Γ(𝛼)
∫

ℎ(𝑡, 𝑠)𝑢(𝑠, 𝑥( Γ(𝑠)))

(𝑡 − 𝑠)1−∝

𝑡

0

𝑑𝑠 

Observe that in view of our assumptions, for any function 𝑥𝜖𝐵𝐶(𝑅+) the function Gx and Fx are 

continuous on R+. We show that the same holds also for the function Ux. To do this fix T > 0. ∈>0. 

 Next assume that   𝑡1. t2 ∈ [0, 𝑇] are such that|𝑡2 − 𝑡1| ≤∈.Without loss of generality we can assume that 

t1<t2. Then, in view of imposed assumptions, we have 

|(Ux)(t2) − (Ux)(t1)| ≤
1

r(α)
∫

h(t2.s)u(s,x(Γ(s)))

(t2−s)1−∝

t2

0
ds − ∫

h(t2,s)u(s,x(Γ(s)))

(t2−s)1−∝

t1

0
ds ∫

h(t2,s)u(s,x(Γ(s)))

(t2−s)1−∝

t1

0
ds  

-− ∫
ℎ(𝑡1,𝑠)𝑢(𝑠,𝑥(Γ(𝑠)))

(𝑡1−𝑠)1−∝

𝑡1

0
𝑑𝑠 ≤ |

1

𝑟(𝛼)
| ∫

ℎ(𝑡2,𝑠)𝑢(𝑠,𝑥(Γ(𝑠)))

(𝑡2−𝑠)1−∝

𝑡2

0
𝑑𝑠 + ∫

ℎ(𝑡2,𝑠)𝑢(𝑠,𝑥(Γ(𝑠)))

(𝑡2−𝑠)1−∝

𝑡1

0
𝑑𝑠 

                               -∫
ℎ(𝑡1.𝑠)𝑢(𝑠.𝑥(Γ(𝑠)))

(𝑡2−𝑠)1−∝

𝑡1

0
𝑑𝑠 + ∫

ℎ(𝑡1𝑠)𝑢(𝑠.𝑥(Γ(𝑠)))

(𝑡2−𝑠)1−∝

𝑡1

0
𝑑𝑠 + ∫

ℎ(𝑡1.𝑠)𝑢(𝑠.𝑥(Γ(𝑠)))

(𝑡1−𝑠)1−∝

𝑡1

0
𝑑𝑠 

≤
1

Γ(𝛼)
∫

|ℎ(𝑡2. 𝑠)𝑢 (𝑠, 𝑥(Γ(𝑠)))|

(𝑡2 − 𝑠)1−∝

𝑡2

𝑡1

𝑑𝑠 +
1

Γ(𝛼)
∫

ℎ(𝑡2. 𝑠)𝑢 (𝑠, 𝑥(Γ(𝑠)))

(𝑡2 − 𝑠)1−∝

𝑡2

𝑡1

𝑑𝑠 

+
1

𝑟(𝛼)
∫ |ℎ(𝑡1. 𝑠)| |𝑢 (𝑠, 𝑥(Γ(𝑠)))|

𝑡1

0
|

1

(𝑡2−𝑠)1−∝ −
1

(𝑡1−𝑠)1−∝| 𝑑𝑠 ≤
𝑘𝑎(𝑡2)

Γ(α)
∫

𝑏(𝑠)Φ(|𝑥(Υ(𝑠))|)

(𝑡2−𝑠)1−∝

𝑡1

𝑡2
  

+
𝑘𝜔𝑇(ℎ, 𝜖)

Γ(α
∫

𝜙(|𝑥(Υ(𝑠))|

(𝑡2 − 𝑠)1−∝

𝑡1

0

𝑑𝑠 +
𝑘𝑎(𝑡1)

Γ(α)
∫ 𝑏(𝑠)𝜙(|𝑥(Υ(𝑠))| [

1

(𝑡1 − 𝑠)1−∝
−

1

(𝑡2 − 𝑠)1−∝
]

𝑡1

0

𝑑𝑠 

≤
𝑘𝑎𝑇𝑏𝑇Φ(‖𝑥‖)

Γ(α)
∫

1

(𝑡2 − 𝑠)1−∝
𝑑𝑠 +

𝑡2

𝑡1

𝑘𝑎(𝑡1)

Γ(α)
∫

1

(𝑡2 − 𝑠)1−∝
+

𝑘𝑎𝑇𝑏𝑇Φ(‖𝑥‖)

Γ(α)

𝑡1

0

 

× ∫ [
1

(𝑡1 − 𝑠)1−∝
−

1

(𝑡2 − 𝑠)1−∝
] 𝑑𝑠 ≤

𝑡1

0

𝑘𝑎𝑇𝑏𝑇Φ(‖𝑥‖)

Γ(α + 1)
(𝑡2 − 𝑡1)∝ +

𝑘𝑎𝑇𝑏𝑇Φ(‖𝑥‖)

Γ(α + 1)
[𝑡2

∝ − (𝑡2 − 𝑡1)∝] 

+
𝑘𝑎𝑇𝑏𝑇Φ(‖𝑥‖)

Γ(α+1)
[𝑡1

∝ − 𝑡2
∝ + (𝑡2 − 𝑡1)∝] ≤

2𝑘𝑎𝑇𝑏𝑇Φ(‖𝑥‖)

Γ(α+1)
(𝑡2 − 𝑡1)∝ +

𝑘𝜔𝑇(ℎ,𝜖)Φ(‖𝑥‖)

Γ(α+1)
𝑡2

∝                       (3.3) 

Where we denote 

𝑎𝑇 = 𝑚𝑎𝑥{𝑎(𝑡): 𝑡 ∈ [0, 𝑇]}, 𝑏𝑇 = 𝑚𝑎𝑥{𝑏(𝑡): 𝑡 ∈ [0, 𝑇]}, 
𝜔𝑇(ℎ, 𝜖) = sup {|ℎ(𝑡2, 𝑠) − ℎ(𝑡1, 𝑠)|: 𝑠, 𝑡1, 𝑡2 ∈ [0, 𝑇], |𝑡2 − 𝑡1| ≤∈} 

Observe that invoking the uniform continuity of the function h (t,s)on the set[0,T]*[0,T]we deduce 

that𝜔𝑇(ℎ, 𝜖) → 0 as ∈→ 0 Further, Keeping in mind the estimate(3.3) we obtain 

𝜔𝑇(𝑈𝑥 ∈) ≤
1

Γ(𝛼+1)
[2𝑘𝑎𝑇𝑏𝑇𝜙(||𝑥||)]𝑇𝛼                                                                              (3.4) 
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Linking inequality (3.4) with the established facts we conclude that the function Ux is continuous on the 

interval [0,T] for any T > 0.This yields the continuity of the function UX is continuous on the interval 

[0,T]for any T > 0. This yields the continuity of Ux on R+. 

Finally, combining the continuity of the functions Ax, Fx and Ux we deduce that the function Vx is 

continuous on R+. 

Now, taking a function 𝑥 ∈ 𝐵𝐶(𝑅+).for an arbitrarily 𝑡 ∈ 𝑅+.we get 

|(𝑉𝑥)(𝑡)| ≤ |(𝐺𝑥)(𝑡) + |(𝐹𝑥)(𝑡)||((𝑈𝑥)(𝑡)| 
 

≤ |𝑔(𝑡. 𝑥(𝜂(𝑡)) − 𝑔(𝑡, 0)| + |𝑔(𝑡, 0)| +
1

Γ(𝛼)
[|𝑓 (𝑡, 𝑥(𝛽(𝑡))) − 𝑓(𝑡, 0)|] ∫

|ℎ(𝑡,𝑠)|| 𝑢(𝑠,𝑥(𝛾(𝑠)))|

(𝑡−𝑠)1−𝛼

𝑡

0
ds 

≤ 𝑝|𝑥(𝑥(𝜂(𝑡)) + �̅� +
𝑘𝑎(𝑡)[𝑞|𝑥(𝛽(𝑡)| + �̅�]

Γ(𝛼)
∫

𝑏(𝑠)𝜙(|𝑥(𝛾(𝑠)|)

(𝑡 − 𝑠)1−𝛼
𝑑𝑠

𝑡

0

 

≤ 𝑝||𝑥|| + �̅� +
𝑘𝑎(𝑡)||𝑥||Φ(||𝑥||)

Γ(𝛼)
∫

𝑏(𝑠)

(𝑡 − 𝑠)1−𝛼

𝑡

0

𝑑𝑠 +
𝑘�̅�𝑎(𝑡)𝜙(||𝑥||)

Γ(𝛼)
∫

𝑏(𝑠)

(𝑡 − 𝑠)1−𝑥
𝑑𝑠

𝑡

0

 

≤ 𝑝||𝑥|| + �̅� +
𝑘𝑎(𝑡)�̅�(𝑡)

Γ(𝛼)
||𝑥||Φ(||𝑥||) +

𝑘𝑓𝑎(𝑡)�̅�(𝑡)

Γ(𝛼)
Φ(||𝑥||) ≤ 𝑝||𝑥|| + �̅� +

𝑘𝑞�̅�(𝑡)

Γ(𝛼)
Φ(||𝑥||)           (3.5) 

 

  Now, keeping the assumptions, estimate (3.5) yields 

 ||𝑉𝑥|| ≤ 𝑝||𝑥|| + �̅� +
𝑘𝑎�̅�

Γ(𝛼)
||𝑥||Φ(||𝑥||) +

𝑘�̅��̅�

Γ(𝛼)
Φ (||𝑥|| ≤ 𝑝||𝑥|| + �̅� +

1

Γ(α)
[𝑁||𝑥||𝜙||𝑥||) +

𝑀𝜙(||𝑥||)                                                                                        (3.6) 

Combining this estimate with our assumptions we deduce that there exists a number r0>0 such that the 

operator V transforms the ballBr0into itself. 

Now let us take a nonempty subset 𝑋 ∈ 𝐵𝑟0then for x, y ∈ X and for an arbitrarily fixed 𝑡 ∈ 𝑟+we have 
|(𝑉𝑥)(𝑡) − (𝑉𝑦)(𝑡)|

≤ |𝑔 (𝑡. 𝑥(𝜂(𝑡))) − 𝑔 (𝑡. 𝑦(𝜂(𝑡)))|

+ |
𝑓 (𝑡. 𝑥(𝛽(𝑡)))

Γ(𝛼)
∫

ℎ(𝑡, 𝑠)𝑢 (𝑠. 𝑥(𝛾(𝑠)))

(𝑡 − 𝑠)1−𝛼
𝑑𝑠 −

𝑓 (𝑡. 𝑦(𝛽(𝑡)))

Γ(𝛼)

𝑡

0

|

× ∫
ℎ(𝑡, 𝑠)𝑢 (𝑠, 𝑦(𝛾(𝑠)))

(𝑡 − 𝑠)1−𝛼
𝑑𝑠|≤ 𝑝|𝑥(𝜂(𝑡) − 𝑦(𝜂(𝑡)| +

1

Γ(𝛼)

𝑡

0

|𝑓 (𝑡, 𝑥(𝛽(𝑡)))

− 𝑓(𝑡, 𝑦(𝛽(𝑡))) 

× ∫
ℎ(𝑡, 𝑠)𝑢 (𝑠, 𝑥(𝛾(𝑠)))

(𝑡 − 𝑠)1−𝛼
𝑑𝑠 +

𝑓 (𝑡. 𝑦(𝛽(𝑡)))

Γ(𝛼)

𝑡

0

∫
ℎ(𝑡, 𝑠)𝑢 (𝑠. 𝑥(𝛾(𝑠))) − 𝑢 (𝑠, 𝑦(𝛾(𝑠)))

(𝑡 − 𝑠)1−𝛼
𝑑𝑠

𝑡

0

 

 

            ≤ 𝑝|𝑥(𝜂(𝑡)) − 𝑦(𝜂(𝑡))| +
𝑘𝑎(𝑡)|𝑥(𝛽(𝑡))|

Γ(𝛼)
∫

𝑏(𝑠)|𝑢(𝑠.𝑥(𝛾(𝑠)))|

(𝑡−𝑠)1−𝛼

𝑡

0
𝑑𝑠 

+𝑎(𝑡)[|𝑓 (𝑡, 𝑦(𝛽(𝑡))) − 𝑓(𝑡, 0)| + |𝑓(𝑡, 0)|]

Γ(𝛼)
∫

𝑏(𝑠) |𝑢 (𝑠. 𝑥(𝛾(𝑠)))| + 𝑢 (𝑠. 𝑦(𝛾(𝑠)))

(𝑡 − 𝑠)1−𝛼

𝑡

0

 

≤ 𝑝|𝑥(𝜂(𝑡)) − 𝑦(𝜂(𝑡))| +
𝑘𝑎(𝑡)|𝑥(𝛽(𝑡))| − 𝑦(𝛽(𝑡))|

Γ(𝛼)
∫

𝑏(𝑠)Φ(|𝑥(𝛾(𝑠))|)

(𝑡 − 𝑠)1−𝛼

𝑡

0

𝑑𝑠

+
𝑘𝑎(𝑡)[𝑞|𝑦(𝛽(𝑡)) + |𝑓(𝑡, 0)|]

Γ(𝛼)
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× ∫
𝑏(𝑠)Φ(|𝑥(𝛾(𝑠))|) + Φ(|𝑦(𝑦(𝑠))|]

(𝑡 − 𝑠)1−𝛼
𝑑𝑠 ≤ 𝑝|𝑥(𝜂(𝑡) − 𝑦(𝜂(𝑡))| +

𝑘𝑞𝑎(𝑡)𝑏 ̅(𝑡)Φ(r0)

Γ(𝛼)

𝑡

0

|𝑥(𝛽(𝑡))

− 𝑦(𝛽(𝑡)) 

+
2𝑞𝑎(𝑡)𝑏 ̅(𝑡)

Γ(𝛼)
r0Φr0 +

2𝑘𝑓𝑎(𝑡)�̅�(𝑡)

Γ(𝛼)
Φr0 ≤ pdiamX(η(t)) +

𝑘𝑞𝑁 ̅̅ ̅Φ(r0)

Γ(𝛼)
|𝑑𝑖𝑎𝑚𝑋(𝛽(𝑡)) 

+
2𝑘�̅�(𝑡)

Γ(𝛼)
r0Φr0 +

2kn̅(t)

Γ(𝛼)
Φr0, 

From the above estimate, we derivative the following inequality: 

Diam(VX)(t) ≤ pdiamX(η(t) +
𝑁Φ(r0)

Γ(𝛼)
𝑑𝑖𝑎𝑚𝑋(𝛽(𝑡)) +

2𝑘�̅�𝑡

Γ(𝛼)
r0Φr0 +

2𝑘�̅�𝑡

Γ(𝛼)
)Φr0 

Hence, from assumption (H6) we get 

lim
𝑡−∞

sup 𝑑𝑖𝑎𝑚(𝑉𝑋) (𝑡) ≤ 𝑘 lim
𝑡−∞

sup 𝑑𝑖𝑎𝑚(𝑋) (𝑡),                                              (3.7) 

Where𝑘 = 𝑝 +
𝑁Φr0

Γ(𝛼)
 

Obviously in view of assumption (A7) we have that k<1. 

Further, let us take arbitrary numbers T>0and 𝜖 > 0. Next, fix arbitrarily a function 𝑥𝜖𝑋and 𝑡1𝑡2𝜖[0, 𝑇]such 

that |𝑡2 − 𝑡1| ≤ 𝜖with out loss of generally we may assume that   t1 < t2    then, taking into account our 

assumptions and using the previously obtained estimate (3.3) we get 

|(𝑉𝑥)(𝑡2) − (𝑉𝑥)(𝑡1)
≤ |(𝐺𝑥)(𝑡2) − (𝐺𝑥)(𝑡1)| + |(𝐹𝑋)(𝑡2)(𝑈𝑋)(𝑡2) − (𝐹𝑋)(𝑡1)(𝑈𝑋)(𝑡2) − (𝐹𝑋)(𝑡1)(𝑈𝑋)(𝑡1) 

≤ |𝑔 (𝑡2, 𝑥(𝜂(𝑡2))) − 𝑔 (𝑡1, 𝑥(𝜂(𝑡1)))|

+
|𝑓 (𝑡2,𝑥(𝛽(𝑡2))) − 𝑓 (𝑡1,𝑥(𝛽(𝑡1)))|

Γ(𝛼)
∫

|ℎ(𝑡2, 𝑠)| |𝑢(𝛾(𝑠)))|

(𝑡2 − 𝑠)1−𝛼

𝑡2

0

𝑑𝑠 

+
|𝑓(𝑡1. 𝑥(𝛽(𝑡1)))

Γ(𝛼 + 1)
[2𝑘𝑎𝑇𝑏𝑇𝜙(||𝑥||)𝜖𝑥 + 𝑘𝜔𝑇(ℎ, 𝜖)𝜙(||𝑥||)𝑇𝛼] 

≤ |𝑔(𝑡2, 𝑥(𝜂(𝑡2))) − 𝑔(𝑡2, 𝑥(𝜂(𝑡1)))| + |𝑔(𝑡2, 𝑥(𝜂(𝑡1))) 

−𝑔(𝑡1,𝑥(𝜂(𝑡1)) +
|𝑓(𝑡2, 𝑥(𝛽(𝑡2))) − 𝑓(𝑡2, 𝑥(𝛽(𝑡1)))| + |𝑓(𝑡2, 𝑥(𝛽(𝑡1))) − 𝑓(𝑡1, 𝑥(𝛽(𝑡1)))

Γ(𝛼)
 

× ∫
ka(t2)b(s)ϕ(|x(γ(s)))|

(t2 − s)1−α
ds +

|f(t1,x(β(t1))) − f(t, 0)| + |f(t, 0)|

Γ(α + 1)
[2𝑘𝑎𝑡𝑏𝑡𝜙(||𝑥||)𝜖𝑥 + 𝑘𝜔𝑇(ℎ, 𝜖)𝜙(||𝑥||)𝑇𝛼]

t2

0

)

≤ p|x(η(t2)x(η(t1))|ΨT(g. ϵ)
ka(t2)[q|x(β(t2) − x(β(t1))| + ΨT(f, ϵ)

Γ(α)
∫

b(s)ϕ(|x(γ(s))|)

(t2 − s)1−α

t2

0

ds 

+
q|x(β(t1))| + |f(t. 0)|

Γ(𝛼 + 1)
[[2𝑘𝑎𝑡𝑏𝑡𝜙(||𝑥||)𝜖𝑥 + 𝑘𝜔𝑇(ℎ, 𝜖)𝜙(||𝑥||)𝑇𝛼]pΨT(x, vT(η, ϵ)+𝜔𝑇(𝑔, 𝜖) 

 

 

         Further let us consider the sequence (𝐵𝑛
𝑟0), where𝐵1

𝑟0 = 𝐶𝑜𝑛𝑣𝑉(𝐵𝑟0
1 ), 𝐵1

𝑟0 =

𝐶𝑜𝑛𝑣𝑉(𝐵𝑟0
1 ) … …Obivously all sets of this sequence are nonempty, bonded, convex and closed. Apart  

from this we have that 𝐵𝑟0
𝑛+1 ⊂ 𝐵𝑟0

𝑛 ⊂ 𝐵𝑟0 𝑓𝑜𝑟 𝑛 = 1,2,3 ….Thus, keeping in mind that k<1 and taking 

into account of eq(3.10),we infer that lim
𝑛→∞

𝜇(𝐵𝑟0
𝑛 ) = 0   Hence. In view of the axiom (A6) of definition 

2.1,we deduce that the set 𝑦 =∩𝑛=1
∞ 𝐵𝑟0

𝑛  is nonempty, bounded, convex and closed. Moreover, in the light 

of Remark 2.1, we have that 𝑌𝜖𝑘𝑒𝑟𝜇. let also observe that the operator V maps the set Y into itself. 

Step II :-Now we proves  that V is the continuous on the set Y. 

 Let fix 𝜖 > 0 and take the arbitrary function 𝑥, 𝑦𝜖 𝑌  such that ||𝑥 − 𝑦|| ≤∈Taking into account 

the fact that 𝑌𝜖𝑘𝑒𝑟𝜇 and the description of sets from ker 𝜇 we can find T>0 such that for all 𝑥, 𝑦𝜖 𝑌 and 

𝑡 ≥ 𝑇 we have that|𝑥(𝑡) − 𝑦(𝑡)| ≤∈. 
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Now assume that 𝑡 ≥ 𝑇. then keeping in mind that 𝑥, 𝑦𝜖 𝑌 and 𝑣: 𝑌 → 𝑌,we derive easily the following 

estimate: 

|(𝑣𝑥)(𝑡) − (𝑣𝑦)(𝑡)| ≤∈ 

Further, take 𝑡 ∈ [0, 𝑇].Then applying our assumption and evaluating similarly as above, we obtain 

(𝑉𝑥)(𝑡) − (𝑉𝑦)(𝑡)|≤ 𝑝|𝑥(𝜂(𝑡) − 𝑦(𝜂(𝑡))| +
𝑘𝑞𝑎(𝑡)|𝑥(𝛽(𝑡) − 𝑦(𝛽(𝑡)

Γ(𝛼)
∫

𝑏(𝑠)𝜙(|𝑥(Υ(𝑠))|)

(𝑡 − 𝑠)1−∝

𝑡

0

 

                                   

+
𝑎(𝑡)[𝑞|𝑦(𝛽(𝑡))| + |𝑓(𝑡, 0)|]

Γ(𝛼)
∫

𝑏(𝑠)[|𝑢 (𝑠, 𝑥(y(s)))|]

(𝑡 − 𝑠)1−∝

𝑡

0

𝑑𝑠 

≼ 𝑝 ∈ +
𝑘𝑞𝑎(𝑡)�̅�(𝑡)Φ(𝑟0)

Γ(𝛼)
𝜖 +

𝑞𝑎(𝑡)�̅�(𝑡)𝑟0

Γ(𝛼)
𝜔𝑇(𝑢, 𝜖) +

�̅�𝑎(𝑡)�̅�(𝑡)

Γ(𝛼)
𝜔𝑇(𝑢, 𝜖)                         (3.12) 

Where we denote 

 𝜔𝑇(𝑢, 𝜖) = sup{|𝑢(𝑡, 𝑥) − 𝑢(𝑡, 𝑦)|: 𝑡𝜖[0, 𝑇], |𝑥|, |𝑦| ≼∈} . 
 Observe that view of uniform continuity of the function u (t, x) 

 We have that 𝜔𝑇(𝑢, 𝜖) → 0 𝑎𝑠 ∈→ 0. 

Now linking Eqs. (3.11) and (3.12),we calculated that the operator V is continuous on the set Y. 

Finally, taking into account the properties of the set Y and the operator 𝑉: 𝑌 → 𝑌 𝑒𝑠𝑡𝑎𝑏𝑙𝑖𝑠ℎ𝑒𝑑 above and 

applying the classical Schauder fixed point theorem we infer that the operator V has at least one fixed 

point x= x (t) in Y, Obviously, the function x(t) is a solution of eq.(1.1).Moreover, the solutions are 

uniformly locally attractive on R+. 

 

4) Application 
 

These results can be applied to the following functional integral equation of fractional order with deviating 

arguments: 

𝑥(𝑡) = 𝑔 (𝑡, 𝑥(𝜂1(𝑡)) … … . . 𝑥(𝜂1(𝑡))) +
𝑓(𝑡,𝑥(𝛽1𝑡)),…𝑥(𝛽𝑚(𝑡))

Γ(𝛼)
∫

𝑢(𝑡,𝑠,𝑥(𝛾𝑛(𝑠)))

(𝑡−𝑠)1−𝑥

𝑡

0
𝑑𝑠           (4.1) 

Where  𝑡𝜖𝑅1 and 𝛼 is a fixed number𝛼𝜖(0,1). 

Assume the following conditions  

(B1) The function 𝑔: 𝑅− ∗ 𝑅1 → 𝑅 is continuous and there exists constants 𝑝𝑖 ≥ 0(𝑖 = 1,2 … . 𝑙) such that  

    |𝑔(𝑡, 𝑥1 … … 𝑥1) − 𝑔(𝑡, 𝑦1, … . . 𝑦1)| ≤ ∑ 𝑝𝑖
𝑚
𝑖=1 |𝑥𝑖 − 𝑦𝑖|            (4.2) 

For all 𝑡 ∈ 𝑅+ and for all (𝑥1,𝑥2, … … , 𝑥𝑙), (𝑦1,𝑦2, … … , 𝑦𝑙) ∈ 𝑅. 

(B2)The function 𝑓: 𝑅− ∗ 𝑅𝑚 → 𝑅is continuous and there exists constants 𝑞𝑖 ≥ 0(𝑖 = 1,2 … . 𝑚)such that 

               |𝑓(𝑡, 𝑥1 … … 𝑥𝑚) − 𝑔(𝑡, 𝑦1, … . . 𝑦𝑚)| ≤ ∑ 𝑞𝑖
𝑚
𝑖=1 |𝑥𝑖 − 𝑦𝑖|            (4.3) 

 

(B3) The function 𝜂𝑖 , 𝛽𝑖 , 𝛾𝑖: 𝑅+ → 𝑅+ are continuous (i=1,2…….,l ; j=1,2,…..m and k=1,2,……n). 

(B4)The function ℎ: 𝑅+ ∗ 𝑅+ → 𝑅+is continous and there exists functions𝑎, 𝑏: 𝑅+ → 𝑅+ being continuous on R+such 

that  

|ℎ(𝑡, 𝑠)| ≤ 𝑎(𝑡)𝑏(𝑠) 

For any 𝑡, 𝑠 ∈ 𝑅+. 

(B5)The function 𝑢: 𝑅+ ∗ 𝑅+ → 𝑅+ is continuous and Moreover, there exists a function Φ: 𝑅+ → 𝑅+ being 

continuous and non decreasing on R+ and constants𝐾𝑖 ≥ 0(𝑖 = 1,2, … … 𝑛) such that 

         ||𝑢(𝑡, 𝑥1, … 𝑥𝑛)| ≤ ∑ 𝑘𝑖
𝑛
𝑖=1 Φ(|𝑥𝑖|)|                             (4.4)   

For any 𝑡 ∈ 𝑅+. And for all  𝑠 ∈ 𝑅+. 

Now denote by �̅� and�̅�, the following constants �̅� = sup {|𝑓(𝑡, 0, … .0)|: 𝑡 ∈ 𝑅+},�̅� = sup {|𝑓(𝑡, 0, … .0)|: 𝑡 ∈ 𝑅+}. 

Obviously, �̅��̅� < ∞ in view of assumptions (B1) and (B2). Further, let us denote by �̅�(𝑡) the function defined on R+. 

in the following way: 

�̅�(𝑡) = ∫
𝑏(𝑠)

(𝑡−𝑠)1−𝛼

𝑡

0
𝑑𝑠. 

It is easily seen that �̅�(𝑡)is continuous on R+. The function �̅�: 𝑅+ → 𝑅+defined by the formula�̅�(𝑡) = 𝑎(𝑡)�̅�(𝑡), 
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Is bounded on 𝑅+ and  lim
𝑡→∞

�̅� (𝑡) = 0.Keeping in mind, the above assumption we define the following constants:�̅� =

sup {�̅�(𝑡): 𝑡 ∈ 𝑅+}.In order to formulate our last assumption, let us denote 𝑝 = ∑ 𝑝𝑖 . 𝑞𝑙
𝑖=1  and 𝑝 = ∑ 𝑞𝑖 

𝑚
𝑖=1 and 𝑘 =

∑ 𝑘𝑖
𝑛
𝑖−1 , 𝑁 = 𝑘𝑞�̅� and 𝑀 = �̅�𝑁  ̅̅ ̅̅ There exists a positive solution r0of the inequality 

𝑝𝑟 + �̅� +
1

Γ(𝛼)
[𝑁𝑟Φ(𝑟) + 𝑀Φ(𝑟)] ≼ 𝑟, 

      Such that(𝑝 +
𝑁Φ(𝑟0)

Γ(𝛼)
) < 1. 

Under the assumptions (B1)-(B5) ,it is easy to prove that Eq. (4.1) has at least one solution x=x(t)which belongs to 

the space BC( R+)and moreover, the solutions are uniformly locally attractive on R+. 

 

5.Example 

 

Consider the following nonlinear functional integral equation of fraction order with deviating arguments: 

𝑥(𝑡) =
𝑡2+𝑣𝑎𝑟𝑐𝑡𝑔(𝑥(𝑡

2⁄ )

4+5𝑡2 +
𝑐𝑜𝑠2𝑡+

𝑥(𝑡/3)

3+𝑡2

Γ(1/2)
∫

𝑠𝑒−𝛿𝑡𝑙𝑛(1+√|
𝑥(𝑠/4)𝑠

4
)|

(𝑡−𝑠)1/2

𝑡

0
𝑑𝑠,                                       (5.2) 

Where 𝑡𝜖𝑅+and 𝑣 is positive constant.Moreover,𝛿 is fixed natural number. 

   Notice that the above equation is a special case of Eq.(1.1)if we put𝛼 =
1

2
, 𝜂(𝑡) =

𝑡

2
, 𝛽(𝑡) =

𝑡

3
, Υ(𝑡) = 𝑡/4and  

𝑔(𝑡, 𝑥) =
𝑡2 + 𝑣𝑎𝑟𝑐𝑡𝑔(𝑥(𝑡

2⁄ )

4 + 5𝑡2
 

𝑓(𝑡, 𝑥) = 𝑐𝑜𝑠2𝑡 +
𝑥

3+𝑡2, 

ℎ(𝑡, 𝑠) = 𝑠𝑒−𝛿𝑡, 𝑢(𝑡, 𝑥) = 𝑙𝑛(1 + √|𝑥|) 

Obliviously the functions 𝜂(𝑡), 𝛽(𝑡)𝑎𝑛𝑑 𝛾(𝑡)satisfy assumption(H3),In fact, we have that the functions g(t, x)and 

f(t, x) satisfying assumptions(H1)and(H2)with p=v/4 and q=0.3333 and hence �̅� = 0.2 𝑎𝑛𝑑 �̅� = 1. 

Further observe that the assumptions (H4) and (H5) are satisfied with𝑎(𝑡) = 𝑒−𝛿𝑡, 𝑏(𝑠) = 𝑠, Φ(|𝑥|) = √|𝑥| and 

k=1. 

Next we check that the assumption (H6) is satisfied, let us notice that the function �̅�(𝑡)appearing in that assumption 

takes the form.�̅�(𝑡) =
4

3
𝑡3/2𝑒−𝛿𝑡 .Thus it is easily seen that assumption (h6) is satisfied and hence we get �̅� =

4

3𝑒
(

1

𝛿
)3/2 and𝑀 = 0.4905(

1

𝛿
)3/2. 

Now let us note that the inequality from (H7) has the form 

𝑣

4
𝑟 + 0.2 =

1

Γ(1/2)
[0.1635 (

1

𝛿
)

3

2
√𝑟
𝑟

+ 0.4905 (
1

𝛿
)

3

2
√𝑟] ≤ 𝑟.                              (5.2) 

It is easily seen that the number r0=1 is a solution of inequality (5.2) if we take v=1 and δ=1Obiviously the second 

inequality from assumption (H7) is automatically satisfied in our situation. 

Thus on the basis of Theorem 3.1 we conclude that Eq. (5.1) has at least one solution in the space BC(R+) belonging 

to the ball B1 provided v-1 and δ=1. Moreover the solutions are uniformly locally attractive on R+. 
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